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pyMonteCarlo is a programming interface to run identical simulations using different Monte Carlo programs. The
interface was designed to have common input and output that are independent of any Monte Carlo code. This allows
users to combine the advantages of different codes and to compare the effect of different physical models without
manually creating and running new simulations for each Monte Carlo program. The analysis of the results is also
simplified by the common output format where results are expressed in the same units.

pyMonteCarlo is mainly designed and developed to fulfill simulation needs and solve problems faced by the elec-
tron microscopy and microanalysis community. Adapting pyMonteCarlo to other scientific fields is not completely
excluded, but it is a more long-term objective.

Contents 1
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CHAPTER 1

Goals

pyMonteCarlo has the following goals:

* Provide a common interface to setup Monte Carlo simulations for the electron microscopy and microanalysis
community.

* Provide a common interface to analyze and report results from simulations.

» Easy way to create several simulations by varying one or more parameters.

* Store results in a open, easy accessible file format.

* Support several Monte Carlo programs.

* Be extensible to new Monte Carlo programs.

* Run on multiple operating systems, including on computer clusters.
Reversely, pyMonteCarlo does not attempt to:

* Support all the finer details and particularities of each Monte Carlo program. pyMonteCarlo tries to be as
general as possible. This allows the same simulation options to be simulated on several programs.

* Provide new features to existing Monte Carlo program. Each program is taken as is. The development of new
features is left to the original authors of the program.

* Provide a complete suite of analysis tools. pyMonteCarlo provides general tools to tabulate and plot results.
This cannot however fulfill the needs of all users. Results can be exported to csv and Excel file. Users can also
write their own Python scripts to analyze their results.
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CHAPTER 2

License

pyMonteCarlo and the packages providing interfaces to Monte Carlo programs are licensed under Apache Software
License 2.0.
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CHAPTER 3

Contributors

e Philippe T. Pinard (High Wycombe, United Kingdom)
e Hendrix Demers (Montreal, Canada)

e Raynald Gauvin (McGill University, Montreal, Canada)

Silvia Richter (RWTH Aachen University, Aachen, Germany)

3.1 Installation

3.1.1 Stable release

There are two ways to install pyMonteCarlo. The simplest one is the stand-alone version, which comes as a zip file
containing an application executable under Windows. The more advanced one is to install pyMonteCarlo as a Python
package from the Python Package Index (PyPI). Instructions for both methods are given below as well as how to install
pyMonteCarlo for developers.

Stand-alone, graphical user interface

Note: Stand-alone version for MacOS and Linux are under development. Users of these operating systems can install
pyMonteCarlo as a Python package. See instructions below.

Windows

For Windows, pyMonteCarlo is packaged as a stand-alone distribution. The latest release can be downloaded here.
To install, simply extract the content of the zip file and run pymontecarlo.exe. This distribution is bundled with all
supported Monte Carlo programs.



https://github.com/ppinard
https://github.com/drix00
http://www.memrg.com
https://github.com/silrichter
http://www.gfe.rwth-aachen.de/seiteninhalte_english/esma.htm
pypi.org
https://github.com/pymontecarlo/pymontecarlo/releases
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Python package

pyMonteCarlo only supports Python 3.7+. It is recommended to install the latest Python version. You can download
Python from the official release. Using other Python distribution like Anaconda, minconda, etc. should also work.

To install pyMonteCarlo, run this command in your command prompt/terminal:

$ pip install pymontecarlo pymontecarlo-gui

This is the preferred method to install pyMonteCarlo, as it will always install the most recent stable release.

pyMonteCarlo package provides the core, common functionalities. In other words, it does not contain the interface
to Monte Carlo programs. Each interface has its own package. The supported Monte Carlo programs are listed here.

As a starting point, it is recommended to install pymontecarlo-casino2. Most of the examples in this documentation
are based on pymontecarlo-casino2. This Monte Carlo program works on Windows and after installation Wine on

MacOS and Linux. Installation instructions are below.

’$ pip install pymontecarlo-casino2

If your PYTHONPATH is properly configured, you should be able to run pyMonteCarlo graphical user interface by

simply typing pyMonteCarlo in a command prompt/terminal:

’$ pymontecarlo

If not, another way to start pyMonteCarlo is the following:

’$ python -m pymontecarlo_gui

3.1.2 Development

Warning: Many projects in the pyMonteCarlo organization uses Git LFS. Please make sure it is installed before
cloning any repository.

Clone the pyMonteCarlo Github repository, either directly or after forking:

$ git clone git://github.com/pymontecarlo/pymontecarlo

Install the project in editable mode:

$ cd pymontecarlo
$ pip install -e

. [dev]

Run the unit tests to make sure everything works properly:

$ pytest

Repeat the same procedure for any other pyMonteCarlo projects in the Github pyMonteCarlo organization.

3.1.3 Wine

Wine is a Windows emulator for MacOS and Linux. Since some Monte Carlo programs are only available on Windows,
Wine is a way to run them on other operating systems. Please refer to the Wine website to download the latest version

Chapter 3. Contributors
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and the platform-specific installation instructions. pyMonteCarlo assumes that Wine is properly installed and that the
wine executable is in the PATH.

3.2 Tutorials

3.2.1 First simulation

A (Monte Carlo) Simulation consists in (1) options, defining all the necessary parameters to setup the simulation, and
(2) results, containing all the outputs of a simulation. One or more simulations form a Project. A pyMonteCarlo
project stored on disk has the extension .mcsim. It consists of a HDFS file and can be opened in the HDFViewer or
using any HDFS5 library.

Setting up simulation options
The options are defined by the class Options. It contains all the parameters necessary to run one simulation. The
parameters are grouped into four categories:

* program

* beam

* sample

* analyses

The beam, sample and analyses are independent of Monte Carlo programs. In other words, the same sample definition
can be used for different Monte Carlo programs. For a given Opt ions instance, only the program needs to change
to run the same simulation with different Monte Carlo programs. That being said not all beam, sample and analyses
are supported by all Monte Carlo programs. Supported parameters for each Monte Carlo program are listed in the
supported options page.

Program

The program is specific to a particular Monte Carlo program. Each program follows the contract specified by the base
program class Program. One implementation is for Casino 2 as part of the package pymontecarlo-casino2. The
program can be imported as follow:

: from pymontecarlo_casino2.program import Casino2Program

The parameters associated with the program will depend on each Monte Carlo program. For Casino 2, the number of
trajectories and the models used for the simulation can be specified. Here is an example with the default models and
5000 trajectories:

: program = Casino2Program(5000)

Throughout pyMonteCarlo, a parameter can also be set/modified using its attribute inside the class:

: program.number_trajectories = 6000

All parameters are completely mutable and are only validated before a simulation starts.

3.2. Tutorials 9
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Beam

The second category of parameters is the beam. At the moment, three types of beam are implemented/supported:
* apencil beam: beam with no diameter,

* a Gaussian beam: beam where the electrons are randomly distributed following a two dimensional Gaussian
distribution, where the diameter is defined as full width at half maximum (FWHM),

¢ acylindrical beam: beam where the electrons are randomly distributed within a cylinder.

All beam implementations must define the energy and type of the incident particles as defined by the base Beam class.
The type of incident particle is defined for future expansions, since all currently supported Monte Carlo programs only
accept ELECTRON. Unless otherwise stated, all beams assume that the incident particles travel downwards along the
z-axis, i.e. following the vector (0, 0, -1).

The pencil beam is the most supported by the different Monte Carlo programs as no diameter is defined. Here is an
example of a pencil beam with a beam energy of 15keV:

: from pymontecarlo.options.beam import PencilBeam

beam = PencilBeam(15e3)

Other parameters of the beam are the beam center position. By default, the beam is centered at x = Omandy = Om.
The position can be changed using either attribute:

]: beam.x_ m = 100e-9

beam.y_m = 200e-9

Sample

The sample parameter defines the geometry and the materials of the sample being bombarded by the incident particles.
There are currently 5 types of sample implemented:

* substrate (SubstrateSample): An infinitely thick sample.
* inclusion (InclusionSample): An half-sphere inclusion in a substrate.

* horizontal layered (HorizontallLayerSample): Creates a multi-layers geometry. The layers are assumed
to be in the x-y plane (normal parallel to z) at tilt of 0.0°.

* vertical layered (VericalLayerSample): Creates a grain boundaries sample. It consists of 0 or many layers
in the y-z plane (normal parallel to x) simulating interfaces between different materials. If no layer is defined,
the geometry is a couple.

* sphere (SphereSample): A sphere in vacuum.

For all types of sample, the sample is entirely located below the z = 0 plane. While some Monte Carlo programs
support custom and complex sample definitions, it was chosen for simplicity and compatibility to constrain the avail-
able types of sample. If you would like to suggest/contribute another type of sample, please open an enhancement
issue or submit a pull request.

Before creating a sample, material(s) must be defined. A material defines the composition and density in a part of the
sample (e.g. layer or substrate). After importing the Material class,

] : from pymontecarlo.options.material import Material

There are three ways to create a material:

1. Pure, single element material:

10 Chapter 3. Contributors


https://github.com/pymontecarlo/pymontecarlo/issues
https://github.com/pymontecarlo/pymontecarlo/pulls

pyMonteCarlo Documentation, Release 1.1.0+8.g0bda5a5

: material = Material.pure(l4) # pure silicon

2. A chemical formula:

: material = Material.from_ formula('Si102")

3. Composition in mass fraction. The composition is expressed as a dict where keys are atomic numbers and
values, mass fractions:

composition = {29: 0.4, 30: 0.6}
material = Material ('Brass', composition)

In all three cases the mass density (in kg/m3) can be specified as an argument or set from its attribute:

: material.density_kg per_m3 = 8400
material.density_g_per_cm3 = 8.4

If the density is not specified, it is calculated using this following formula:

]._ m;

p Pi
where p; and m; are respectively the elemental mass density and mass fraction of element <.

Each sample has different methods and variables to setup the materials. Here is an example for the substrate sample:

from pymontecarlo.options.sample import SubstrateSample
from pymontecarlo.options.material import Material

copper = Material.pure(29)
substrate = SubstrateSample (copper)

and here is an example for the horizontal layered sample. The substrate is set to copper and two layers are added on
top, forming from top to bottom: 100nm of SiO2, 50nm of brass and then copper:

from pymontecarlo.options.sample import HorizontallayerSample
from pymontecarlo.options.material import Material

copper = Material.pure (29)
sio2 = Material.from_formula('SiO2")
brass = Material('Brass', {29: 0.4, 30: 0.6})

sample = HorizontallLayerSample (copper)

sample.add_layer (sio2, 100e-9)
sample.add_layer (brass, 50e-9)

One trick to make sure the sample is properly setup is to draw it. pyMonteCarlo uses matplotlib to draw the sample
in 2D along the XZ, YZ or XY perspective. Here is an example:

import matplotlib.pyplot as plt
from pymontecarlo.figures.sample import SampleFigure, Perspective

fig, axes = plt.subplots(l, 3, figsize=(10, 3))
samplefig = SampleFigure (sample, beams=[beam])

for ax, perspective in zip(axes, Perspective):

(continues on next page)

3.2. Tutorials 11
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(continued from previous page)

samplefig.perspective = perspective
samplefig.draw (ax)

plt.show ()

Analyses

The analyses define which results from the Monte Carlo simulation will be processed and stored by pyMonteCarlo.
To see a list of the supported analyses, please refer to supported options page.

Here is how to store the X-ray intensityies emitted from the sample. First we need to define a photon detector. Each
detector requires a name, and the photon detector, an additional argument specifying its elevation, i.e. the angle
between the detector and the XY plane.

from pymontecarlo.options.detector import PhotonDetector
import math
detector = PhotonDetector (name='detectorl', elevation_rad=math.radians (40))

The photon detector is then used to create a new analysis.

from pymontecarlo.options.analysis import PhotonIntensityAnalysis
analysis = PhotonIntensityAnalysis (detector)

Options
The final step is to put together the program, beam, sample and analysis and create an Opt ions. Note that the options
can take several analyses, but in this example we only specified one.

from pymontecarlo.options import Options
options = Options (program, beam, sample, [analysis])

Running simulation(s)

We are now ready to run the simulation. pyMonteCarlo provides an helper function to run several simulation options.
These options and their results are automatically stored in a Project object, which can be stored on disk and
viewed in either the HDFViewer or the graphical interface of pyMonteCarlo. The results can also be processed
programatically, as it will be demonstrated in this tutorial.

from pymontecarlo.runner.helper import run_async
project = await run_async ([options])

import os

import tempfile
project.write (os.path. join (tempfile.gettempdir (), 'projectl.h5"))

Interpreting simulation results

Let’s now explore the results. Each simulation gets stored in the simulations attribute of the project object:

12 Chapter 3. Contributors
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: project.simulations

Each simulation consists in the options used to setup the simulation and the results, which is a list of result
objects.

simulation = project.simulations[0]
print ('Simulation at keV contains result (s)'.format (simulation.options.beam.
—energy_keV, len(simulation.results)))

The PhotonIntensityAnalysis returns an EmittedPhotonIntensityResult, which essentially con-
sists of a dictionary, where the keys are the emitted X-ray lines and the values, their intensities. Here is a quick way
to list all X-ray lines. The attribute siegbahn can be replaced with iupac if this notation is preferred. As shown
below, the total X-ray intensity of a family of lines (e.g. K, L) is automatically calculated.

result = simulation.results[0]
print ('Available X-ray intensities:')
for xrayline in result:

print (xrayline.siegbahn)

And here is how to retrieve the intensity of one line.

import pyxray

xrayline = pyxray.xray_line('Si', 'Ka')
intensity = result[xrayline]
print ('X-ray intensity of 2 +/- '.format (xrayline.siegbahn, intensity.n,

—intensity.s))

Another way to analyze the result is to convert them to a pandas dataframe. The project has two meth-
ods to create a data frame for the options using create_options_dataframe(...) and for the results
create_results_dataframe (...). Eachrow in these data frames corresponds to one simulation. Both have
one required settings argument to specify the X-ray notation and units used.

from pymontecarlo.settings import Settings, XrayNotation
settings = Settings /()

settings.set_preferred_unit ('eV'")
settings.set_preferred_unit ('nm')
settings.set_preferred_unit ('deg')
settings.preferred_xray_notation = XrayNotation.SIEGBAHN

: project.create_options_dataframe (settings)

: project.create_results_dataframe (settings, abbreviate_name=True)

This concludes the first tutorial on how to run a single simulation.

3.2.2 Run several simulations

One advantage of pyMonteCarlo is the possibility to run several simulations. In this example, we will try to study the
influence of the beam energy and the thickness of the carbon coating on the k-ratios of O Ka and Al Ka in orthoclase.

We start by defining the beam energies and carbon thicknesses.

3.2. Tutorials 13
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beam_energies_keV = [5.0, 10.0, 20.0]
carbon_thicknesses_nm = [10, 20, 50]

We import the required classes of pyMonteCarlo and Python’s built-in module, itertools. For this example, we will
run the simulations with Casino 2, but this could be replaced by any support programs.

import math
import itertools

from pymontecarlo_casino2.program import Casino2Program

from pymontecarlo.options.beam import PencilBeam

from pymontecarlo.options.material import Material

from pymontecarlo.options.sample import HorizontallLayerSample
from pymontecarlo.options.detector import PhotonDetector

from pymontecarlo.options.analysis import KRatioAnalysis

from pymontecarlo.options import Options

from pymontecarlo.runner.helper import run_async

‘We create the materials.

material orthoclase = Material.from_ formula ('KA1S1i308")
material_carbon = Material.pure (6)

Using itertools.product (.. .), we create options for every combination of beam energy and carbon thickness
and store them in a list.

list_options = []
for beam_energy_keV, carbon_thickness_nm in itertools.product (beam_energies_keV,

—wcarbon_thicknesses_nm) :
program = Casino2Program (number_trajectories=5000)

beam = PencilBeam(beam_energy_keV % 1e3) # Convert to eV

sample = HorizontallayerSample (material_orthoclase)

sample.add_layer (material_carbon, carbon_thickness_nm » 1le-9) # Convert thickness,
—to meters

detector = PhotonDetector (name='detectorl', elevation_rad=math.radians (40))

analysis = KRatioAnalysis (detector)

options = Options (program, beam, sample, [analysis])
list_options.append (options)

With 3 beam energies and 3 carbon thicknesses, we get 9 options.

len(list_options)

We can now run these simulations in parallel. By default, the number of simulations that will be run concurrently
depends on the number of CPUs. This can be also modified by the argument, max_workers of the run_async (.
. .) function.

project = await run_async(list_options)

We first checks the number of simulations. We should have 9 simulations from the 9 options provided, but also one
simulation for each standard used to calculate the k-ratios. There are 4 elements in orthoclase and one element in the
coating. The same standard can be reused for the different carbon coating thicknesses, but not for the different beam
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energies. So the expected number of simulations shouldbe: 9 + 3 % (4 + 1) = 24. This example shows that
pyMonteCarlo is aware which additional simulations it needs to calculate the k-ratios and only simulate these once.

len (project.simulations)

Now to the analysis of the results. There are several ways to extract results from the simulations, but perhaps the easiest
one is to convert all the results into a pandas DataFrame. To reduce the number of columns of the DataFrame, it
is useful to pass the result class, KRat 1oRes1t in this case, and request only the columns with different information.

from pymontecarlo.results import KRatioResult
from pymontecarlo.settings import Settings, XrayNotation

settings = Settings()
settings.set_preferred_unit ('keV')
settings.set_preferred_unit ('nm'")
settings.set_preferred_unit ('deg')
settings.set_preferred_unit ('g/cm”3")
settings.preferred_xray_notation = XrayNotation.SIEGBAHN

df = project.create_dataframe (settings, result_classes=[KRatioResult], only_different_
—columns=True)
df

The pandas DataFrame above contains one row for each simulation, including the standards. Since we are only
interested in the k-ratios of the unknowns, we can filter the Dat aFrame and drop some columns.

# Keep only standard rows
df = df[df['standard'] != True].dropna(axis=1)

# Remove columns which all contain the same values

df = df[[col for col in df if df[col].nunique() != 1]]
df

We can then use this Dat aF rame to plot the results using matplotlib.
import matplotlib.pyplot as plt
xraylines = ['O Ka', 'Al Ka']

fig, axes = plt.subplots(l, len(xraylines), figsize=(5 » len(xraylines), 4))
fig.subplots_adjust (wspace=0.3)

for ax, xrayline in zip(axes, xraylines):
for beam_energy_keV, df_beam_energy in df.groupby ('beam energy [keV]'):
ax.plot (df_beam_energy['layer #0 thickness [nm]'], df_beam_energy[xrayline],

—'o-", label=f'EO={beam_energy_keV:.0f} keV'")

ax.set_xlabel ('Carbon coating thickness (nm) ')
ax.set_ylabel (f' {xrayline} k-ratio')

axes[0] .legend(loc="best"')

plt.show ()

3.2. Tutorials 15
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3.3 Supported Monte Carlo programs

Here are the currently supported Monte Carlo programs in pyMonteCarlo.

3.3.1 Casino 2

Authors Dominique Drouin, Alexandre Real Couture, Raynald Gauvin, Pierre Hovington, Paula Horny, Hendrix
Demers, Dany Joly, Philippe Drouin and Nicolas Poirier-Demers

Version 2.5.1.0

(2017)

Website http://www.gel.usherbrooke.ca/casino

Supported platforms

¢ Windows

* MacOS (using Wine, see installation)

e Linux (using Wine, see installation)

Python package dependencies
* pycasinotools (code | documentation)

e pymontecarlo-casino2

Installation Casino 2 is distributed inside pymontecarlo-casino2. No installation step is needed.

3.4 Supported options

Here are the options supported by each Monte Carlo program.

3.4.1 Beam
Cylindrical | Gaussian | Pencil
Casino 2 X X
3.4.2 Sample
Horizontal layer | Inclusion | Sphere | Substrate | Vertical layer
Casino2 | x X X
3.4.3 Analysis
Kratio | Photon intensity
Casino 2 | x X

16
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3.5 Examples

Here are examples on how to use pyMonteCarlo.

3.6 Code API

3.5. Examples 17



pyMonteCarlo Documentation, Release 1.1.0+8.g0bda5a5

18 Chapter 3. Contributors



CHAPTER 4

Indices and tables

* genindex
* modindex

e search
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